32 research outputs found

    Nonplanar On-shell Diagrams and Leading Singularities of Scattering Amplitudes

    Full text link
    Bipartite on-shell diagrams are the latest tool in constructing scattering amplitudes. In this paper we prove that a Britto-Cachazo-Feng-Witten (BCFW)-decomposable on-shell diagram process a rational top-form if and only if the algebraic ideal comprised of the geometrical constraints is shifted linearly during successive BCFW integrations. With a proper geometric interpretation of the constraints in the Grassmannian manifold, the rational top-form integration contours can thus be obtained, and understood, in a straightforward way. All rational top-form integrands of arbitrary higher loops leading singularities can therefore be derived recursively, as long as the corresponding on-shell diagram is BCFW-decomposable.Comment: 13 pages with 12 figures; final version appeared in Eur.Phys.J. C77 (2017) no.2, 8

    Graph-based SLAM-Aware Exploration with Prior Topo-Metric Information

    Full text link
    Autonomous exploration requires the robot to explore an unknown environment while constructing an accurate map with the SLAM (Simultaneous Localization and Mapping) techniques. Without prior information, the exploratory performance is usually conservative due to the limited planning horizon. This paper exploits a prior topo-metric graph of the environment to benefit both the exploration efficiency and the pose graph accuracy in SLAM. Based on recent advancements in relating pose graph reliability with graph topology, we are able to formulate both objectives into a SLAM-aware path planning problem over the prior graph, which finds a fast exploration path with informative loop closures that globally stabilize the pose graph. Furthermore, we derive theoretical thresholds to speed up the greedy algorithm to the problem, which significantly prune non-optimal loop closures in iterations. The proposed planner is incorporated into a hierarchical exploration framework, with flexible features including path replanning and online prior map update that adds additional information to the prior graph. Extensive experiments indicate that our method has comparable exploration efficiency to others while consistently maintaining higher mapping accuracy in various environments. Our implementations will be open-source on GitHub.Comment: 8 pages, 6 figure

    Top-forms of Leading Singularities in Nonplanar Multi-loop Amplitudes

    Full text link
    Bipartite on-shell diagrams are the latest tool in constructing scattering amplitudes. In this paper we prove that a Britto-Cachazo-Feng-Witten (BCFW)-decomposable on-shell diagram process a rational top-form if and only if the algebraic ideal comprised of the geometrical constraints is shifted linearly during successive BCFW integrations. With a proper geometric interpretation of the constraints in the Grassmannian manifold, the rational top-form integration contours can thus be obtained, and understood, in a straightforward way. All rational top-form integrands of arbitrary higher loops leading singularities can therefore be derived recursively, as long as the corresponding on-shell diagram is BCFW-decomposable.Comment: This article has been merged with arXiv:1411.3889 and published in Eur.Phys.J. C. Thanks for the citations! and please cite "Eur.Phys.J. C77 (2017) no.2, 80" from now o

    Effect of κ Carbides on Deformation Behavior of Fe-27Mn-10Al-1C Low Density Steel

    No full text
    Fe-Mn-Al-C steel, which is a potential lightweight material for automobiles, has a variety of microstructures and good mechanical properties. The effect of κ carbides on the mechanical properties and strain hardening rate of Fe-27Mn-10Al-1C (wt.%) low density steel was studied by short-time heat treatment to control the precipitation behavior of κ carbides. Quenched specimens have an excellent combination of strength and plasticity and continuous high strain hardening rate, which is due to the uniform distribution of κ carbides with an average size of 1.6 nm in an austenite matrix. The fracture mode of the sample changed from ductile fracture to cleavage fracture, which was because the aging treatment promoted the precipitation of B2 phases and κ carbides at grain boundaries. The size and volume fraction of nanoscale κ carbides in austenite grains increase with the increase of aging temperature, and the yield strength increases but the density of slip bands decreases, resulting in the gradual decrease of strain hardening rate

    Effect of κ Carbides on Deformation Behavior of Fe-27Mn-10Al-1C Low Density Steel

    No full text
    Fe-Mn-Al-C steel, which is a potential lightweight material for automobiles, has a variety of microstructures and good mechanical properties. The effect of κ carbides on the mechanical properties and strain hardening rate of Fe-27Mn-10Al-1C (wt.%) low density steel was studied by short-time heat treatment to control the precipitation behavior of κ carbides. Quenched specimens have an excellent combination of strength and plasticity and continuous high strain hardening rate, which is due to the uniform distribution of κ carbides with an average size of 1.6 nm in an austenite matrix. The fracture mode of the sample changed from ductile fracture to cleavage fracture, which was because the aging treatment promoted the precipitation of B2 phases and κ carbides at grain boundaries. The size and volume fraction of nanoscale κ carbides in austenite grains increase with the increase of aging temperature, and the yield strength increases but the density of slip bands decreases, resulting in the gradual decrease of strain hardening rate

    3D Point Cloud Generation Based on Multi-Sensor Fusion

    No full text
    Traditional precise engineering surveys adopt manual static, discrete observation, which cannot meet the dynamic, continuous, high-precision and holographic fine measurements required for large-scale infrastructure construction, operation and maintenance, where mobile laser scanning technology is becoming popular. However, in environments without GNSS signals, it is difficult to use mobile laser scanning technology to obtain 3D data. We fused a scanner with an inertial navigation system, odometer and inclinometer to establish and track mobile laser measurement systems. The control point constraints and Rauch-Tung-Striebel filter smoothing were fused, and a 3D point cloud generation method based on multi-sensor fusion was proposed. We verified the method based on the experimental data; the average deviation of positioning errors in the horizontal and elevation directions were 0.04 m and 0.037 m, respectively. Compared with the stop-and-go mode of the Amberg GRP series trolley, this method greatly improved scanning efficiency; compared with the method of generating a point cloud in an absolute coordinate system based on tunnel design data conversion, this method improved data accuracy. It effectively avoided the deformation of the tunnel, the sharp increase of errors and more accurately and quickly processed the tunnel point cloud data. This method provided better data support for subsequent tunnel analysis such as 3D display, as-built surveying and disease system management of rail transit tunnels

    Relative Pose Estimation and Accuracy Verification of Spherical Panoramic Image

    No full text
    This paper improves the method of the traditional 5-point relative pose estimation algorithm, and proposes a relative pose estimation algorithm which is suitable for spherical panoramic images. The algorithm firstly computes the essential matrix, then decomposes the essential matrix to obtain the rotation matrix and the translation vector using SVD, and finally the reconstructed three-dimensional points are used to eliminate the error solution. The innovation of the algorithm lies the derivation of panorama epipolar formula and the use of the spherical distance from the point to the epipolar plane as the error term for the spherical panorama co-planarity function. The simulation experiment shows that when the random noise of the image feature points is within the range of pixel, the error of the three Euler angles is about 0.1°, and the error between the relative translational displacement and the simulated value is about 1.5°. The result of the experiment using the data obtained by the vehicle panorama camera and the POS shows that:the error of the roll angle and pitch angle can be within 0.2°, the error of the heading angle can be within 0.4°, and the error between the relative translational displacement and the POS can be within 2°. The result of our relative pose estimation algorithm is used to generate the spherical panoramic epipolar images, then we extract the key points between the spherical panoramic images and calculate the errors in the column direction. The result shows that the errors is less than 1 pixel

    3D Point Cloud Generation Based on Multi-Sensor Fusion

    No full text
    Traditional precise engineering surveys adopt manual static, discrete observation, which cannot meet the dynamic, continuous, high-precision and holographic fine measurements required for large-scale infrastructure construction, operation and maintenance, where mobile laser scanning technology is becoming popular. However, in environments without GNSS signals, it is difficult to use mobile laser scanning technology to obtain 3D data. We fused a scanner with an inertial navigation system, odometer and inclinometer to establish and track mobile laser measurement systems. The control point constraints and Rauch-Tung-Striebel filter smoothing were fused, and a 3D point cloud generation method based on multi-sensor fusion was proposed. We verified the method based on the experimental data; the average deviation of positioning errors in the horizontal and elevation directions were 0.04 m and 0.037 m, respectively. Compared with the stop-and-go mode of the Amberg GRP series trolley, this method greatly improved scanning efficiency; compared with the method of generating a point cloud in an absolute coordinate system based on tunnel design data conversion, this method improved data accuracy. It effectively avoided the deformation of the tunnel, the sharp increase of errors and more accurately and quickly processed the tunnel point cloud data. This method provided better data support for subsequent tunnel analysis such as 3D display, as-built surveying and disease system management of rail transit tunnels
    corecore